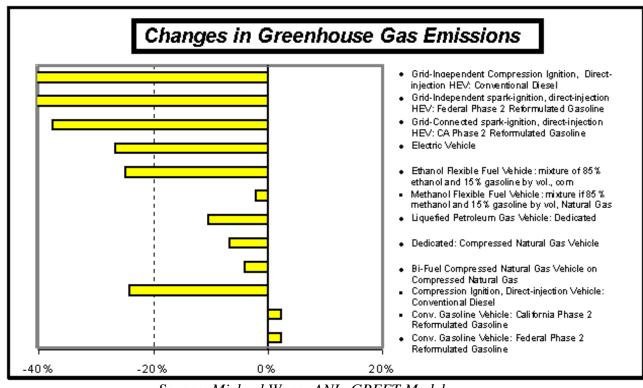
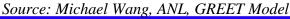
Developing GHG Emission Reduction Projects Using AFV Technologies

Jette Findsen
Science Applications International Corporation (SAIC)

May 15, 2002 8th National Clean Cities Conference and Expo


Overview of Session

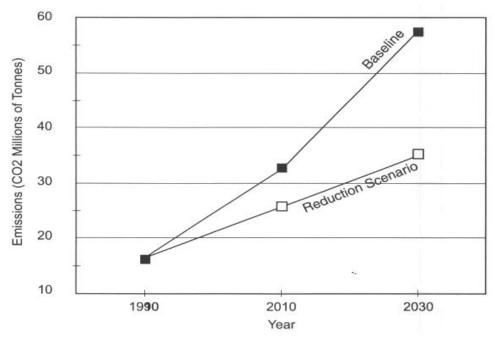

- Potential GHG Mitigation Activities
- GHG Crediting Considerations
- GHG Emission Baseline Characteristics
 - Environmental additionality
 - Relevant GHGs
 - Project boundary
 - Estimation procedures
 - Available data
 - Baseline types
- Validation, Monitoring, and Verification

Why Get Involved in GHG Projects?

- Significant potential for reducing GHG emissions
- Increase fuel security, reduce urban pollution, improve project financing

Potential GHG Mitigation Activities: Transport Sector

- Improve vehicle fuel efficiency
- Change vehicle and/or fuel type
- Switch transport mode
- Reduce transport activity
- Increase load factor


GHG Crediting Considerations

- Investors prefer low-risk, credible, and permanent GHG credits
- Common elements of existing project-based GHG reduction programs
 - GHG emissions baseline
 - Proof of environmental additionality
 - No leakage outside project boundaries
 - Monitoring and verification plan
 - Certification of legitimate ownership

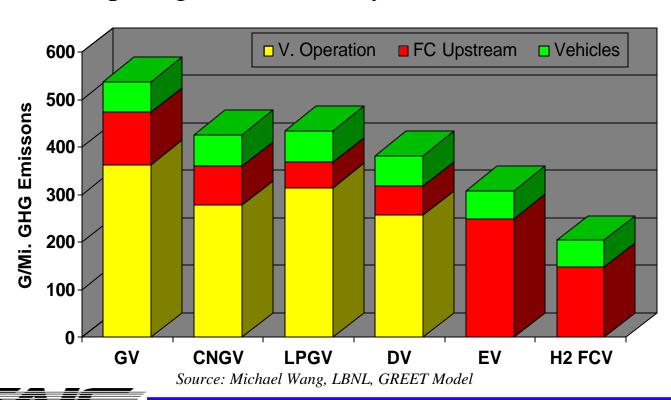
The Emissions Baseline

- Measure for estimating GHG emission benefits
- Loose baseline procedure encourages free riders
- Conservative baseline increases credibility

Baseline Characteristics: Environmental Additionality

- Emission reduction credits must be "additional" to business-as-usual
 - Project must lead to actual GHG emission reductions
 - Projects cannot be part of already planned activities
 - Projects resulting from existing government regulations cannot receive credit

Baseline Characteristics: Relevant GHGs


- All major GHGs must be included in the baseline
- Greenhouse gases from transport activities:
 - Carbon dioxide (CO₂)
 - Methane (CH₄)
 - Nitrous Oxide (N₂O)
- Determine Global Warming Potential (GWP) of GHGs within 100 year time frame
 - $-CO_2 = 1$; $CH_4 = 21$; $N_2O = 310$
 - Expressed in CO₂-equivalent emissions:

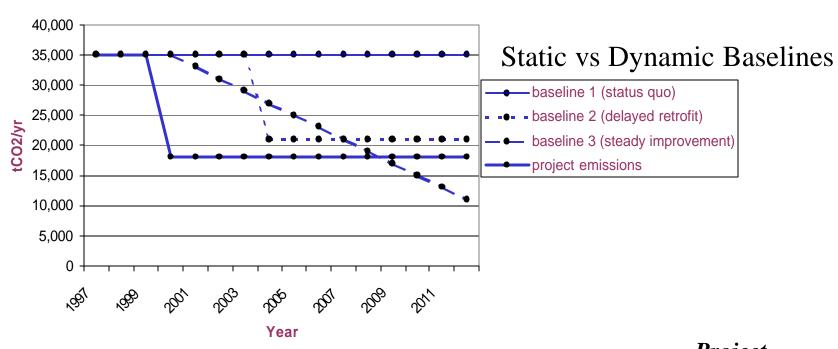
$$CO_2$$
-equiv = 1 x (mass of CO_2) + 21 x (mass of CH_4) + 310 x (mass of N_2O)

Baseline Characteristics: Project Boundary

- Full fuel cycle versus tail pipe emissions analysis
 - Upstream emissions can make a difference when comparing vehicle/fuel systems

Baseline Characteristics: Possible Estimation Procedures

- Tailpipe evaluation
 - (miles per year) x (grams CO₂-equi per mile)
 - (fuel use) x (fuel CO₂-equi)
 - Most useful for projects with majority of emissions from vehicle operation (CNG projects)
 - Add methane penalty for CNG vehicles, if not calculated directly
- Full fuel cycle evaluation
 - More accurate, but complicated
 - Should be used for EV and hydrogen/fuel cell projects

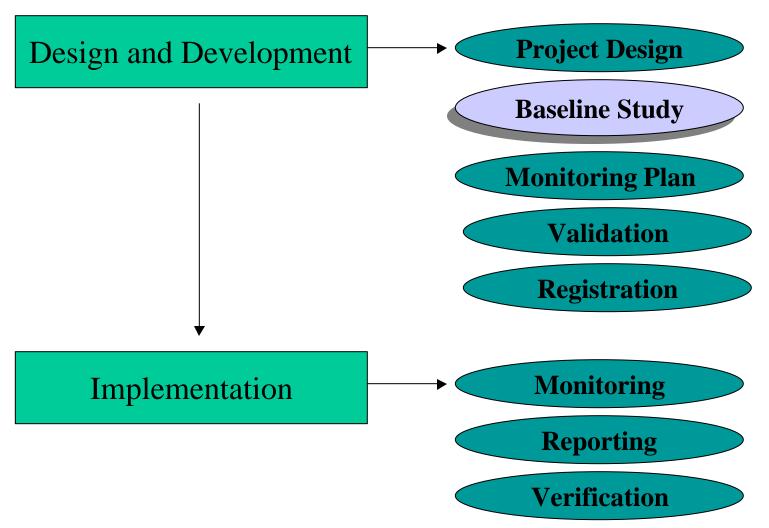

Baseline Characteristics: Available Data

- For U.S. projects use GREET
 - The Greenhouse Gases, Regulated Emissions, and Energy Use in Transportation (GREET) Model
 - Argonne National Laboratory
 www.transportation.anl.gov/ttrdc/greet/
- Other countries
 - Limited data availability
 - One sample transportation project
 - Approved under the UN Framework Convention on Climate Change (UNFCCC) Activities Implemented Jointly (AIJ) Pilot Phase
 - RABA/IKARUS CNG bus project (Hungary)
 - www.unfccc.int/program/aij/aijproject.html

Baseline Characteristics: Sample Types

Comparison of Project Emissions Against Alternative Baselines

	Baseline 1	Baseline 2	Baseline 3	Project Emissions
cumulative emissions	455,000	329,000	299,000	234,000
total credit	221,000	95,000	65,000	-



Validation, Monitoring and Verification

- Three basic steps to ensure credibility of credits
 - Third-party *validation* of baseline study
 - Prior to project registration and implementation
 - In-house *monitoring* of emission reductions
 - During life of project
 - Third-party *verification* that monitored emission reductions took place
 - During and/or after life of project

Summary: Project Development Steps

